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Tricritical points in polymer systems 
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Received 26 January 1990 

Abstract. We consider a lattice model for equilbrium polymerisation in a solvent proposed 
by Wheeler and Pfeuty. We include attractive interactions between first-neighbour 
monomers which belong to polymer chains but are not consecutive along a chain. In the 
limit of no dilution this model describes the collapse transition of a polymer in a poor 
solvent (@-point). When no attractive interaction is present the model is appropriate for 
sulphur solutions,, where a dilution tricritical point is observed. The thermodynamic 
properties of the model were studied by two kinds of calculations. The solution on the 
Bethe lattice shows a locus of tricritical points, including the 0 and dilution tricritical 
points. On a fractal lattice (3D Sierpinski gasket), the exact real space RG solution reveals 
that the @-point and the dilution tricritical point belong to the same universality class. 

1. Introduction 

We consider two different physical situations where polymeric systems display a 
tricritical point. The first case is the so-called collapse transition of polymeric chains 
in a poor solvent (Flory 1966), which may be modelled by attractive interactions 
between monomers competing with the repulsive, excluded volume interactions (De 
Gennes 1975, 1979). This tricritical point, known in the literature as theta point, has 
been the subject of a variety of theoretical investigations such as mean-field calculations 
(Lifshitz et a1 1978), exact enumerations on lattice models (Rapaport 1974, 1977), 
Monte Carlo simulations (Webman et a1 1981), real space RG (Maritan et a1 1989), 
and transfer matrix methods in two dimensions (Derrida and Saleur 1985, Saleur 1986). 
We should remark that the exact tricritical exponents for this model in two dimensions 
were also obtained (Duplantier and Saleur 1987). On the other hand, elemental liquid 
sulphur exhibits a polymerisation transition somewhat below 160 "C. At this tem- 
perature long chains of sulphur atoms start to be formed. If sulphur is diluted in certain 
organic solvents, with increasing dilution the continuous polymerisation transition 
moves towards a higher temperature and, eventually, turns into a first-order phase 
transition at sufficiently low sulphur concentration (Larkin et a1 1967, Knobler and 
Scott 1984). The lower critical solution point associated with this coexistence line was 
initially discussed in a framework of chemical equilibrium theories (Scott 1965), with 
good qualitative agreement between theoretical results and experimental data. Later, 
the analogy between magnetic and polymeric systems (De Gennes 1972) allowed the 
identification of the lower critical solution point in sulphur solutions with the tricritical 
point in the underlying diluted n + O  vector model (Wheeler and Pfeuty 1981). There 
t On leave from: Facultad de Matemhtica, Astronomia y Fisica, Universidad Nacional de Cbrdoba, Laprida 
854, 5000 Cbrdoba, Argentina. 
f Present address: Departamento de Fisica, Universidade Federal de Santa Catarina, 88049 Florianpblis, 
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are fewer theoretical results in the literature regarding this tricritical point (Wheeler 
and Pfeuty 1981, Stilck and  Wheeler 1987), which we will call dilution tricritical point. 

In  this paper we investigate a model displaying both tricritical points mentioned 
above. It is a generalisation of the lattice model proposed for sulphur solutions (Wheeler 
and  Pfeuty 1981). Besides considering equilibrium polymerisation with annealed dilu- 
tion, we introduce attractive interactions between monomers which are first neighbours 
on the lattice, but which are not consecutive along a chain. We perform two distinct 
calculations to investigate the thermodynamic properties of this model. First, we obtain 
an  exact solution on the Bethe lattice (Baxter 1982). In the general parameter space 
this solution shows a tricritical surface, the dilution and  the theta points belonging to 
this surface. On the other side, we solve the model on the 3~ Sierpinski gasket (Dhar 
1978), whose fractal dimension is equal to 2. From a real space RG calculation, which 
is exact on the 3~ Sierpinski gasket, we obtain the eigenvalues of the linearized 
transformation near the fixed points. The 0-poin t  of this model on the .?-simplex lattice, 
which is equivalent to the 3~ Sierpinski lattice regarding critical properties of polymer 
chains, was investigated previously (Dhar  and Vannimenus 1987). In our opinion it 
is a nice example of a non-mean-field tricritical point which may be studied analytically. 

This paper is organized as follows. In section 2 ,  the model is defined, and in section 
3 the Bethe lattice solution is obtained. The solution of the model on the fractal 3~ 

Sierpinski gasket may be found in section 4; in section 5 we present final discussions 
and  comments, and in the appendix we show a relation between the diluted non- 
interacting polymer system and non-diluted interacting polymer system reported 
recently (Maes and Vanderzande 1990) for the particular case of the solution on the 
Bethe lattice. 

2. Definition of the model 

We consider a lattice model, proposed some time ago (Wheeler and Pfeuty 1981), for 
equilibrium polymerisation of sulphur in a solvent, including attractive interactions 
between monomers on first-neighbour sites which are incorporated into chains but are 
not consecutive monomers of the same chain. In this lattice polymer model with 
annealed dilution each site i may be occupied either by a monomer ( v ,  = 1)  or a solvent 
( v ,  = 0 ) .  The polymeric chains are represented by mutually and self-avoiding walks, 
which are constrained to visit only lattice sites where monomers are present. For each 
pair of first-neighbour sites occupied by monomers, a statistical weight y is considered, 
and the fugacity of a monomer will be denoted by z. A statistical weight x' will be 
associated with a polymer bond, and the attractive interaction between chains will be 
introduced by multiplying the statistical weight of a configuration by a factor w for 
each pair of first-neighbour sites occupied by polymers which are not adjacent on a 
chain. In figure 1, an allowed configuration is depicted on the square lattice and its 
statistical weight is given. The end points of the chains are confined to the boundary 
of the lattice. In terms of the analogy between the polymer model and the n -+ 0 limit 
o f the  magnetic n-vector model (Wheeler and Pfeuty 1981), this corresponds to allowing 
a non-zero magnetic field only at the boundary sites. 

The (grandlpartition function will be given by 

where the first sum is over all site configurations ( v ,  = 0, l ) ,  and Nh,  N,, and N ,  are 
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Figure 1. An allowed configuration on the square lattice: (0)  monomers, ( X )  solvent 
molecules, (I) polymer bonds, ( i )  attractive interactions between chains. The statistical 
weight of this configuration is x26y64z48w7. 

the numbers of bonds, non-consecutive first-neighbour sites in chains and pairs of 
first-neighbour sites occupied by monomers, respectively. Finally, r N  is the number 
of configurations on the N-site lattice with the description above. 

3. Solution on the Bethe lattice 

As in the solution of the Ising model on the Bethe lattice (Baxter 1982), we consider 
a Cayley tree with coordination number q and M generations built by connecting 
q-rooted subtrees to a central site (figure 2). We then proceed finding recursion relations 
for partial partition functions, which are numbered according to the configuration of 
the root 

where 

I .  
1 .  
x :  
0 :  
0: 

monomer (in a polymer or not) 
polymer bond 
solvent 
monomer (not in a polymer) or solvent 
monomer or solvent. 

i a 
Figure 2. A Cayley tree with coordination number 9 = 3 and M = 3 generations. 
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Let g:"'  be a partial partition function of a M-generation subtree, which is the 
sum (2.1) for all configurations of the subtree compatible with the given root. 
Then g1 " + I '  may be built by attaching ( q  - 1) M-generations subtrees to a new root 
(figure 3) .  

g :  \'TI I = ( - l)x'yzz ' I g ; "  I (  wgy + g:" ' ) 'I -: 
g2 
g '  " + I ) =  z 1  ' I [ y z l  'I (g;"  ' + g \ " ' ) q - l  + (g i"J) ' I - - ' ]  

This process leads to the following recursion relations 

( 3 . 1 ~ )  

(3 . lb)  

( 3 . 1 ~ )  

( bf + I J = L 
2 ( q - 1 ) ( q - 2)JJz"y ( g :  w ' )?( wg ;U J + g :" J ) ' I - ?  

g Y + "  = z 1  " 3 4  - l ) ( q  - 2 ) ( g " , z ( w g i " ' + g : ' ' ) q - 3  

+ ( g ; " ' + g : ~ J ) " " g ~ * ' ' ) ' I - ~ .  ( 3 . l d )  

In the first recursion relation, for example, the subtree with M + 1 generations has 
a chain incident on the root site. This chain passes through one of the q - 1  M- 
generations subtrees, whose partial partition function is g : M ' .  The factor x' accounts 
for the new bond on the root and y is the statistical weight due to the two monomers 
on the root bond. A factor z("'I1 is included for each monomer on the root bond, 
assuring the correct factor z for a monomer on the tree. Finally, the q - 2  remaining 
M-generations subtrees may be of type 2 or 3. In the first case, a factor w accounts 
for the attractive interaction between first-neighbour monomers incorporated into 
chains. 

Q 
Figure 3. Construction of a ( 4  = 3 ,  M = 3 )  subtree from two ( 4  = 3, M = 2 )  subtrees. 

Considering that the critical value of x' for the polymerisation transition in the pure 
non-interacting case ( w  = 1; z+w) is ?,= l / ( q  - 1) (Stilck and  Wheeler 1987), it is 
convenient to define the parameter x = ( q  - l)x', then we will have, in this limit, x ,  = 1 
for all values of q. 

We note that g ,  is equal to zero only in the unimportant case z = 0, which implies 
no monomers on the lattice. Therefore we can reduce the number of equations by 
defining the quantities 

A = - I  g B , &  C=". g 
g3 g3 g ,  

The recursion relations for A, B, C will be 

( 3 . 2 )  

A 
D A ' = x y z " ' ( w B +  1)9-2- (3.3a) 

A2 
B' = ; (q  - - 2 ) y Z 2 / q ( w ~  + 1)9-,- (3.36) D 

1 C ' = - - ( ~ " ' [ [ f ( q  - l ) (q  - 2 ) ( w B +  1)'-,A2+(B+ 1)'-']+ C 9 - ' }  ( 3 . 3 ~ )  D 
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with 

D = z"q[yzl"( B + 1 y - I  + C"- ' ] .  

From the exact solution for M = 1, we find the initial conditions 

5355 

(3.3d) 

The partition function for the M-generation Cayley tree is obtained by attaching 
q subtrees to the same central site (figure 4). This leads us to 
Y M  = i q ( q - l ) ( g ,  ( M I  ) 2 (wgi"'+g, I M )  ) 4 - 2 +  (g:Mi+g:M))q+(gj?M))q. (3.4) 

The thermodynamic properties of the model on the Cayley tree may be obtained 
from the partition function (3.4) in the limit M+co. It may be useful, at this point, 
to stress that on Bethe lattice calculations the iteration of the recursion relations 
produces the partition functions of the model on larger and larger trees. The recursion 
relations have thus a different character of the ones obtained in RG calculations, where 
the relations between the parameters of the original and the renormalised Hamiltonians 
keep the partition function invariant. 

I 
I 

Figure 4. Configurations of the vicinity of the central site that contribute to the partition 
function. 

In the thermodynamic limit the vector V ! M ) =  ( A ' M ' ,  B"'", C ' M ' )  tends to a stable 
fixed point V* of the relations (3.3), that is, all the eigenvalues of the matrix 

V =  ( A ,  B, C) (3.5) 

have to be less than one. 
The Bethe lattice solution is obtained studying the behaviour of the model deep 

inside the tree in the thermodynamic limit. We may write down the average numbers 
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of monomers and bonds per site in the central region 

or, using (3.2) 

1 
A 

@" =- [+q(q - I)(wB + 1)'-'A2+ ( B  + 

with 

A = i q ( q  - l ) (wB+ 1)'-*A2+ ( B +  1)'+ C q .  

Therefore, the Bethe lattice solution of the model is reduced to finding the stability 
region for the fixed points of equations (3.3), and then looking for the relevant averages 
in the central region. 

3.1. Limiting cases 

relations (3.1) have only terms in g , ,  (g2+g3),  and g,. Therefore we can define 
( a )  Non-interacting polymers. This case corresponds to w = 1 and the recursion 

i1= gl i 2  = (gz + g3) b5 = g4 

and the problem is reduced to the non-interacting polymer system (Stilck and Wheeler 
1987). There are, of course, no attractive interactions in the one-dimensional case, 
q = 2, which has already been studied (Pfeuty and Wheeler 1983, Stilck and Wheeler 
1987). 

(6)  Pure polymer case. In the limit z + a, we have only monomers on the lattice 
sites. The equations (3.1) turn into 

-- d'+" - xg:") (Wg;M' + gy 9 q - 2  

yz'/Y - 2 ( 4 - l ) ( q - 2 ) ( g : M ' ) 2 ( w g : M ' + g ,  1 

yz2'q 

g z - 1  ( M )  q - 3  
( M + l )  

and, up to lowest order in z-I, we can define 
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The recursion relations for A and B are given by 

( w B  + 1 ) q - 2  
A’ = xA 

( B  + l )q- ’  

( w ~  + 1 y3 
( B +  1 y - l  . E’= i (q  - l ) (q  - 2)A2 

The unpolymerised fixed point Au = 0, Bu = 0 gives 

Au=KI = x .  
aA VL 

The unpolymerised stability line is given by the condition hu = 1 (xu = 1). 
For the polymerised fixed point (Ap,  B, f 0) we have, from (3 .8b)  

1 
with B, a positive root of the polynomial of degree ( q  - 1 )  

(3.8a) 

(3.8b) 

(3.9) 

P ( B ) = ( B + 1 ) 4 - ’ - ~ ( w B + l ) 4 - 2 .  (3.10) 

On the unpolymerised stability line, xu = 1 ,  the zero-order term of P ( B )  is equal 
to zero and one of the polymerised fixed points becomes equal to the unpolymerised 
fixed point both with the largest eigenvalue equal to one. The tricritical point will be 
the point on that line at which a third fixed point becomes equal to the unpolymerised 
fixed point. This condition is fulfilled when the zero-order term and the linear term 
of P ( B )  are both equal to zero 

(3 .11 )  

At the tricritical point, the polymerisation phase transition changes from second 
to first-order, and this point may also be defined as the limiting point where the stability 
curves of both phases are coincident. 

In particular, for coordination number q = 3, we have a polynomial of degree 2 
for h p ,  

Then, using (2.10) and making h p =  1 in  this equation, we can obtain a simple expression 
for the stability line of the polymerised phase, 

4(0 - 1 )  
w 2  

xp=- w > w g  = 2. (3.12) 

To obtain the first-order phase transition line we need the bond density at the 
central region, 

1 (BS-1)‘ 
~b=y[ f9 (q - l )g : (wg2+g , )4 -21=  1 -- (3 .13)  A 

with 

A = f q ( q  - 1)A2(wB + 1)‘-‘+ ( B +  l )4 .  
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In the unpolymerised phase @ b  is equal to zero and in the polymerised phase we 
can use (3.13) to write B(@b). Using (3.81, (3.9) and (3.13), we get 

ln(X(@b))=ln(2)+ (q- l ) [ ln(B(@b)+ l)-ln(wB(@b)+ I)]. 

So, we have an analytic expression for h(x(@b))  and we may use the equal area 
rule to calculate the value of x c ( w )  at the first-order transition by performing the 
integration 5 ln(x) do., at w = constant (figure 5). All calculations in figures 5-10 were 
done with coordination number q = 3. 

5 

4 

0 3  

2 

1 
0.6 0.7 0.8 0.9 1.0 1.1 

X 
Figure 5. w against x phase diagram for the pure ( z = m )  case. The stability (spinodal) 
curves are also shown (dotted curves). The broken curve represents first-order transitions 
and the full line locates second-order transitions. 

3.2. Study of the fixed points 

The fixed points of the general problem may be classified into two categories. 

implies, from (3.3), 
( a )  Unpolymerised fixed point. This case corresponds to A, = B, = 0, which 

Z ' / 4 C Z  - CL?'+ y z 2 / 4 c "  - z l / q  = 0. (3.14) 

The non-zero eigenvalues are 

(3.15) 

(3.16) 

ALG is related to the well known Ising lattice-gas problem (Baxter 1982, Stilck and 
Wheeler 1987) and we do not consider it here in detail. 

The stability limit of the unpolymerised phase is given by (3.14) and (3.16) with 
A" = 1, which corresponds to 

[ l+(X-l)y]q- '  
( x  - 1)xq-'yq . Z" = (3.17) 
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( b )  Polymerised fixed point. In the polymerised region we have A,;  B , ;  C ,  # 0, 
and equations (3 .3)  lead to 

(3.18a) 

C , = { ~ ~ ' / ~ [ X ( W B , +  I ) ~ - ~ - ( B , +  1 ) 9 - i 1 } i ' ( q - i )  (3.18b) 

where BP will be a positive root of a polynomial of degree ( q  - 1 ) 2  

p ( B )  = xq-'yqz(wB+ l)'q-"q-'' [x(wB + 1)q-2 - ( B  + 1)'-'] 

- [x(Y+ B ) ( w B  + l ) q - 2 - ( y -  1)(B + l)q-']q-' .  (3.19) 

The stability line must be calculated with the condition A,=  1, where A ,  is the 
largest eigenvalue of the matrix At = a V'/a VI vp. 

3.3. Tricritical points 

As before, at the tricritical points, the zero-order and linear terms of P ( B )  in (3.9) are 
equal to zero. Therefore 

(3.20) 

and zTC(x, y )  given by (3 .17 ) .  

sponds to the limit z + c o j x  + 1,  
We note that both known limiting cases are recovered, the @-point, which corre- 

and the dilution tricritical point, wTC = 1,  

1 
xTC = + 1 .  

( 4  - 2)Y - ( 4  - 1 )  

This corresponds to equation (5.16) of Stilck and Wheeler (1987) if we replace x by 
( q - l ) K ,  and y by w, .  

We also see that in the limit where there are no lattice-gas interactions present, 
that is when y = 1 ,  wTC in (3.20) reduces to we,  and the tricritical dilution point 
disappears in this case. 

The value wTC = 1 is reached only for y 2 ( q  - 1 ) / (  q - 2), and the dilution tricritical 
point and the @-point belong to a line of tricritical points in the 5-w plane (figure 6), 
where 5 is the activity fraction 

J=- 
( l i z ) '  

(= 1 corresponds to a pure polymer system, and the simple case of non-interacting 
polymers without dilution is 5 = 1 ,  w = 1 .  

In figure 7 we show the non-monotonical behaviour of a curve lTC against y for 
w = 1 ,  w = 1.5 and w = 1.999. It should be remarked that when w = ( q  - l ) / ( q  -2)  ( = 2  
for q = 3), the tricritical value of 5 is equal to one, for all values of y. 
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0 0.2 0.4 0.6 0.8 1.0 

i 
Figure 6. Curves wTc against i at y = constant. Full curve represents results for y = y,, = 
( q / 9  -212 = 9 and the broken curve corresponds to y = ( q  - l ) / ( q  - 2 )  = 2 .  

Y 
Figure 7. Curves tTC against y at w =constant: ( a )  w = 1, ( b )  w = 1.5, and ( c )  w = 1.999 
( w  = 2 corresponds to iTc = 1 for all values of J ’ ) .  

3.4. Phase diagrams 

For second-order phase transitions the stability borders of both phases are coincident 
at the phase transition line. At the tricritical point the curves split and  the stability 
limit lines are the spinodal curves associated with a first-order phase transition. The 
coexistence line may be calculated using an equal area rule, by performing the 
integration In(x) d a b  at U ,  y,  z = constant. In figure 8 we show three curves of x as 
a function of ab, with w, y ,  z held constant. The curves (a), (b), and  (c) were calculated 
for w < wTC, w = wTC, and  w > wTC respectively, a thermodynamically unstable region 
being observed in curve (c), signalling a first-order phase transition. Some w against 
x phase diagrams are displayed in figure 9. Curve (a )  corresponds to the pure case 
i =  1, so that the tricritical point in this diagram may be identified with the O-point. 
In curve (b)  5=0.065 and curve (c) was obtained with 5=0.0551, since w T c = l ,  the 
tricritical point in this curve is the dilution tricritical point. Therefore, a continuous 
line of tricritical points exists between the O-point and the dilution tricritical point. 
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1.2 

1.1 

1.0 

0.9 

0.8 
0 0.2 0.4 0.6 

@tl 

Figure8. Curves x against ah f o r i  = 1 at w =constant: ( a )  w = 1, ( 6 )  w = wTc = 2 ,  ( c )  w = 3. 

w 3  

2 

1 

i point ', 

LDTCP 
0.6 0.8 1.0 1.2 1.4 

X 
Figure 9. w against x phase diagrams at y = constant = 7 :  ( a  j 5 = 1 (pure case), ( b )  5 = 0.065, 
and ( c )  i = 0.0551 (wTc  = 1) .  The line of tricritical points joining the @-point ( x  = 1)  and 
the tricritical dilution point ( w  = 1 )  is also depicted. 

All curves were calculated with y = 7. The corresponding Ob against w diagrams are 
shown in figure 10. 

It should be remarked that qualitatively different phase diagrams are obtained for 
large values of y. This feature is already present in the mean-field calculation for the 
dilute polymerisation model (Wheeler and Pfeuty 1981), where critical endpoints are 
found. For shortness, we do not present here results for y > q 2 / ( q  - 2)2 ( = 9  for q = 3), 
but there is no difficulty in obtaining them. 

4. Solution on a fractal lattice 

The problem of pure (z + 00) interacting polymers was studied on several fractal lattices 
(Dhar 1978, Dhar and Vannimenus 1987, Rammal et a1 1984, Vannimenus 1989, and 
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Figure 10. w against Q b  phase diagrams corresponding to the same values of y and 5 as 
in figure 9. 

references therein). In particular it is known that (Rammal et a1 1984) the polymer- 
ization phase transition is of second order for all values of w in the solution on the 
ZD Sierpinski gasket and  in the equivalent solution on the 3-simplex lattice. But it was 
found (Dhar  and  Vannimenus 1987) that the @-point is present in the 3~ Sierpinski 
gasket solution (they obtained the equivalent solution of the model on the 4-simplex 
lattice). In this section, we will study the thermodynamic properties of the dilute 
polymerization model with attractive interactions on the 3~ Sierpinski gasket, which 
gives simpler equations for the dilute case than the equivalent 4-simplex lattice. A 
projection of the 3~ Sierpinski gasket is depicted in figure 11. 

The model is solvable through an exact real space renormalization calculation. On 
this lattice, the critical Ising temperature is equal to zero (Gefen et a1 1980), but the 
lattice-gas problem is equivalent to an  Ising model with non-zero magnetic field, 
therefore we need to enlarge the dimensionality of the space in which we perform the 
decimation transformation, defining five partial partition functions (not only three as 

k-ESR-H 
/ jx:H-B:lxl \ 

Figure 11. The 4-simplex lattice. 
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in Gefen et a1 1980) g, , g,, g,, g, and g, for configurations without polymers and 
corresponding to tetrahedra with 0, 1,2,3 or 4 vertices occupied by solvent, respectively. 

For the configurations with polymer chains going through the tetrahedron we define 
seven partial partition functions, six of them for configurations with a chain going 
once through the tetrahedron, namely: 

if the four vertices are occupied by monomers we define P ,  , P2,  P3 for chains 
visiting four, three or two vertices respectively; 

if just one vertex is occupied by a solvent we define P4 and Ps for chains visiting 
three or two vertices respectively; 

if two vertices are occupied by solvent we define P6 for a chain visiting those two 
vertices. 

Finally we need a seventh partial partition function P, for chains going twice 
through a tetrahedron. 

The initial conditions for the lattice-gas partition functions gi and for the polymer 
partial partition functions Pi are shown in figure 12. 

p = g  x 2 w  'H' 4.0 2.0  

'E' '6.0 = ',,Ox 

E p = g  x 2 w 4  
7.0 1.0 

Figure 12. Initial condition for the partial partition functions. (0)  monomers, (0) solvent, 
( I ) polymer bond. 

Due to the dimension of the combinatorial problem the recurrence relations have 
to be obtained by computer, and their derivation may be understood by observing 
figure 13. In figure 13(a) we show the original and renormalized cells of a renormaliz- 
ation step. In figure 13(b) the contributions to one of the terms of the recursion relation 
are depicted. Note that, as in the non-dilute problem (Dhar and Vannimenus 1987), 
we do not include a factor w for first-neighbour sites occupied by a chain which are 
not in the same tetrahedron; this would lead to more difficulties in solving the problem 
without any qualitative difference in the results (see Klein and Seitz (1984) for 
self-interacting chains on the ZD Sierpinski gasket). There are typically of the order of 
one hundred terms in the recursion relations, but their analysis shows that at the 
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Figure 13. ( a )  Two-dimensional projection of the original and the renormalized cells of 
the exact RG calculations on the 3D Sierpinski gasket. Points at the end of the same broken 
line are actually the same point in the lattice. ( b )  One of the contributions to P i .  

relevant fixed points, the lattice-gas partial partition functions are in the T + 00 fixed 
point values: 

f f = f 4  f* 2 -  -f’ f 3 * = f 2  f4“ =f 
(4 .1 )  

i =  1,. . . , 4  j -=-  g, 
g5 

where the parameter f is defined as a function of y and z through the recurrence 
relations. In particular, if y = 1 in the initial conditions ( T  = 00 or  non-interacting lattice 
gas) it follows t h a t f =  z1’2 at the fixed point for all values of z. Defining the quantities 

i = l , .  . . , 7  p, 
g5 

R G -  ( 4 . 2 )  

we obtained the fixed point values 

R : = f 2 R Z  R f  = f R z  (4 .3 )  R* - R* - R* - 0  I -  2 -  4 -  

where the equations for R z ,  R? are 

U R 6” = U ’ R Z’ + 2 U R t 3  + 2 U R z4 + 4u ‘ R z’ R 7” + 6 U R z 2  R T2 ( 4 . 4 ~ )  

u6R$  = u ~ R , * ~ + ~ u ~ R ~ ’ R ~ $ + ~ ~ R ? ‘  (4 .46 )  

with U = 1 + f *. Now we can define 

R :  A = -  R t  B=7 
U U -  

and the relations for A and B will be given by 

A = A’+ 2A3 + 2A4+ 4A3 B + 6 A 2  B 2  

B = A4 + 4 A 3 B  + 22B4. 

( 4 . 5 ~ )  

(4 .56 )  

These equations are identical to the fixed point equations obtained for the pure 
case (Dhar  and  Vannimenus 1987) and we see that the fixed point values are functions 
off (and therefore of y and z )  but the eigenvalues of the three fixed points are universal. 

( a )  Second-order phase transition fixed point: the eigenvalues are 

Ay=2 .796>1  A ;  =0.254< 1. 
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( b )  First-order phase transition fixed point: 

A : = O  A ;  = 4 = 2df. 

( c )  Tricritical point: this fixed point is fully unstable 

20 100 
27 9 

A S = - .  A ;  =- 

In figure 14 we compare the pure cases z + 00 on this lattice and on the q = 6 Bethe 
lattice solution. 

.o 0.1 c 
2 

Figure 14. w against 1 phase diagrams for the pure case, calculated on ( a )  the Bethe lattice 
with q = 6, and ( b )  the 3D Sierpinski gasket. 

5. Discussion and conclusion 

A generalisation of a model for equilibrium polymerisation in a solvent (Wheeler and 
Pfeuty 1981) with attractive interactions between monomers incorporated into polymers 
is solved exactly on the Bethe lattice (Baxter 1982) and on the fractal 3~ Sierpinski 
gasket. In the solution of the model on the Bethe lattice, the 0 and the dilution tricritical 
points belong to the same tricritical surface in the general parameter space. Also, both 
tricritical points are related to the same fixed point of the real space decimation RG 

transformation for the model defined on the 3~ Sierpinski gasket. 
It should be stressed that actually the model of polymers with attractive interactions 

for the collapse transition (De Gennes 1975) and the model for equilibrium polymer- 
ization in a solvent (Wheeler and Pfeuty 1981), are quite similar in their physical 
background. Both models take into account the interactions between the polymer 
chains and the solvent. In the first model these interactions are considered indirectly, 
by introducing attractive interactions inside and between chains which tend to collapse 
the polymers, therefore reducing their area of contact with the poor solvent. In the 
second model, the effect of the solvent is considered explicitly, in the form of a lattice 
gas interaction. Also, sites which are not occupied by solvent not incorporated into 
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chains are allowed (non-activated monomers). So, it is not surprising that the dilution 
tricritical point and the O-point are two particular points in the same locus of tricritical 
points in the Bethe lattice solution of the model with both attractive interactions and 
annealed dilution; also, the O-point may be obtained as a limiting case of the dilution 
(non-interacting) tricritical point (see the appendix). 

It is interesting to study the model on two-dimensional regular lattices; we are 
actually working in that direction. 

Acknowledgments 

We acknowledge financial support by CNPq (Brazilian agency). A critical reading of 
the manuscript by Professor S Salinas is gratefully acknowledged. 

Appendix. Pure interacting polymer case as a limit of the dilute non-interacting 
polymer system on the Bethe lattice 

Recently (Maes and Vanderzande 1990) showed that the high-temperature expansion 
of the partition function of the dilute classical n-vector model in the n + 0 limit, for 
z+O; x+m; and xz=constant is equivalent to the grand partition function of the 
interacting non-dilute polymer problem. 

In this appendix we show how this limit is realized in the particular case of the 
Bethe lattice solution. For the solution on the Bethe lattice we have that equations 
(3.1) are equivalent to equations (3.8) when 

w = l  z + o  X+CC xz = constant. 

If w = 1 in (3.1) we may define 

g1 h, = z-”‘(g2+g3) h3 = g4 
h - z ( 4 - 2 ) ! 2 4  

I -  

and so the recursion relations may be written as 

hi = ah lhz -2  

hi  = 4(q - 1)( q - 2 ) ~ h f h ; - ~  + h:-’+ O(z) 

h j = ;( - 1 ) (  - 2)  hfhq-3 + h;-l+ O( Z )  

where a = xyz. 

3.1, since in the limit z +  E, with w # 1, g, vanishes. So, we define 
Now we will change variables in a different way from the one adopted in section 

and the recursion relations for the J ;  are 
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Now, as was done in section 3, we may deduce the number of equations by defining 

and the new recursion relations will be 

Replacing a by x and y by w,  equations (A3) are identical to equations (3.8). 
A similar calculation does not hold for our solution on the 3~ Sierpinski gasket, 

since we did not consider interactions between first-neighbour sites occupied by chains 
and situated in different tetrahedra on the lattice. Thus, the parameter w appears only 
in the initial conditions, being not present in the expressions for the recursion relations. 
This simplifies somewhat the solution of the problem, but breaks down the exact 
relationship between both models in the limit stated above. 
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